when he touched it he saw that it was changed into a toad, which sprang upon his face and squatted there, and would not go away. When any one tried to take it off, it spat out poison and seemed about to spring in the face, so that at length nobody dared to meddle with it. Now this toad the ungrateful son was compelled to feed, lest it should feed on his flesh; and with this companion he moved wearily about from place to place, and had no rest anywhere in this world." This very story is found in Etienne de Bourbon, 163, Bromyard, F. 22, Pelbartus, Serm. de Temp. Hiem., 22, B, not to mention other works of the same class, which are mentioned in Oesterley's notes to Pauli, 437, and in Douhet, Dictionnaire des Légendes, col. 305, n. 158. Until quite recently Grimm's version was the only popular one known, but a version from Lower Brittany has lately been published by F. M. Luzel, Légendes chrétiennes de la Basse-Bretagne, Paris, 1881, vol, ii, p. 179, Le Fils ingrat. There are probably other popular versions which have not yet been collected, the class of legends or legendary and religious stories having been greatly neglected by collectors of popular literature. There is no need of insisting upon the importance of the exempla in the diffusion of stories, but we may mention in conclusion two cases of wholesale absorption of Oriental stories into collections of exempla or similar works. The first case is that of the Disciplina clericalis of Petrus Alfonsi, which has been taken up into the Libro de Enxemplos mentioned above ; the second is the Seven Wise Masters, a compend of which is found in the Scala Coeli of a Dominican monk, Joannes Junior, who lived in the middle of the XIV century, and wrote a work of the same general description as Bromyard's and Etienne de Bourbon's.* Separate stories from both of the above Oriental collections are frequently encountered among the popular tales of Europe, and their wide diffusion is doubtless due to their absorption into the above collections.

The Latitude of Haverford College Observatory. By Isaac Sharpless.
(Read before the American Philosophical Society, April 6, 1883.)
The latitude of Harverford College Observatory was determined in the year 1854, by Prof. Jos. G. Harlan, by the use of a transit instrument in the prime vertical. Imperfect records of his results and none at all of his computations remain, but from them he deduced a value of $40^{\circ} 0^{\prime} 36.5^{\prime \prime}$.

In the spring of 1881, a zenith instrument was placed in position in the observatory. The telescope has an aperture of $1 \frac{3}{4}$ inches, and with its standards revolves about a vertical axis. It is provided with micrometer and levels.

[^0]The latitude was determined by pairs ot stars, one of each pair being north and one south of the zenith. The difference of the zenith distances was measured by the micrometer and the latitude calculated by the formula,

$$
\varphi=\frac{1}{2}\left(\delta+\delta^{\prime}\right)+\frac{1}{2}\left(\mathrm{Z}-\mathrm{Z}^{\prime}\right)
$$

As a preliminary work the value of a revolution of the micrometer screw was determined by observing the passage of a star between the wires set at some known distance apart, and multiplying the time by the factor
$15 \times \cos$ Dec . The mean of twenty-one observations was $111.6^{\prime \prime}$. Dist. between wires
A better result was obtained by the method of observing Polaris at time of greatest elongation. This time T_{o} and the zenith distance Z_{o} were first calculated and the telescope set at the latter angle. About twenty minutes before T_{0} the movable micrometer wire was set in front of the star and the time of crossing recorded on the chronograph; the wire was then advanced one-fifth of a revolution, and the time again noted, and so on forty times. From these were obtained twenty values of a revolution of the screw. The computation is given in outline in the following table. The quantity $\mathrm{Z}-\mathrm{Z}_{\mathrm{o}}$ was computed in each case by the equation :

$$
Z-Z_{0}=\sin \left(T-T_{0}\right)_{\sin 1^{\prime \prime}}^{\cos \delta}
$$

The level error was so slight that it was not taken into account ;

No.	Micrometer	T.			$\mathrm{T}-\mathrm{T}_{0}$.		Z. $-\mathrm{Z}_{6}$.	
1	6.80	$6^{\mathrm{b}} 50^{\mathrm{m}}$	18. ${ }^{8}$	-	$21^{\text {m }}$	3.1	-	433.59
2	6.60	51	16.2	-	20	5.1	-	412.68
3	6.40	52	33.2	-	18	49.1	-	387.70
4	6.20	53	34.2	-	17	47.1	-	366.55
5	6.	54	40.9	-	16	40.4	-	343.59
	etc.	etc.			etc.			etc.
21	2.80	$6^{4} \quad 72$	0.2	+	0	38.9	$+$	13.55
22	2.60	78	16.4	+	1	45.1	+	36.12
23	2.40	74	17.4	+	2	56.1	$+$	60.52
24	2.20	75	4.2	+	3	42.9	+	76.61
25	2.	76	14.4	$+$	4	53.1	$\begin{gathered} +\quad 100.74 \\ \text { etc. } \end{gathered}$	
	etc.	etc.			etc.			

Comparing the 1st observation with 21st, the 2 d with 22 d and so on, and dividing the results by 4 , we obtain for the value of a revolution of the screw by this method the following:

111.78	111.25	113.04	109.92
112.20	110.71	113.98	112.66
112.05	111.28	113.26	112.76
110.76	110.67	112.78	111.88
111.08	111.59	112.25	111.16

The mean of these is $111 .{ }^{\prime \prime} 9$ and this is the value employed in subse-
quent work. The probable error of this mean by the method of least square is $0 .{ }^{\prime \prime} 14$.
The value of a level division was obtained by placing the movable micrometer wire on a terrestrial mark, and taking the reading, and again after the instrument was changed in altitude so as to cause the bubble to to move through a certain number of divisions. This gave it in micrometer revolutions, which were afterwards reduced to seconds. The result of a large number of determinations gave, as the most probable value, $6^{\prime \prime} .3$,
The stars used were taken from the Nine Years Catalogue of Greenwich Observatory for 1872 , the mean declinations calculated for the epoch 1881.0, 1882.0, or 1883.0, and the apparent declinations for the night of observation were obtained by the use of the "independent star numbers" of the American Nautical Almanac. The results were as follows :

Date.	Catalogue No, of Stars.		$1 / 2\left(\delta+\delta^{\prime}\right)$			Micrometer Correction.			Level Correction.		Latitude.	
$1881 .$					32 " 99							
	2166	2185			$\begin{array}{r} 32.99 \\ 56.29 \end{array}$	-		16.45		$\begin{gathered} 6^{\prime \prime} .7 \\ 8 . \end{gathered}$	$40^{\circ} 0^{\prime}$	10.42 12.84
4	48	51	39	56	22.			6.23		10.5		38.73
10 mo .27.	48	51		56	22.			25.65		8.1		39.55
$11 \mathrm{mo} 15.$.	2166	2185										12,92
	48	51	39	56	24.45	$+$		19.83	-	4.5		10.08
$12 \mathrm{mo} 8.$.	48	51	39	56	26.23			57.26	+	17.85		11.34
12 mo. 9.	48	51	39	56	26.29			57.57		20.1		13.89
12 mo .10.	48	51	39	56	26.30		4	1.59		14.6		12.49
	62	77	41	5	41.87			18.27	$+$	14.6		48.20
$12 \mathrm{mo} 16.$.	48	14	39	56	26.39			30.50	-	11.85		45.11
	62	77	40	5	38.40			43.65	-	14.7		10.05
12 mo. 17.	62	77	40	5	38.46	-	4	50.65	-	7.7		40.11
12 mo. 19.	48	51	39	56	26.54			24.07		12.3		88.31
	62	77	40	5	38.48			50.16		9.9		38.42
12 mo .24.	48 62	$\frac{51}{77}$	39 40	5	26.80			16.86	-	2.4		41.26
			40									
$1 \mathrm{mo}, 27$.	567	569	40	9	16.17	-	5	42.02	+	5.78		39.93
1 mo .30 ,	530	550	39	59	51.78	$+$		42.69		8.		37.42
	567	569	40	6	24.08	-		39.50		6.13		38.40
2 mo .1.	530	550	89	59	51.44	$+$		41.24		6.45		39.18
	567	569	40	6	15.67	-		43.53		3.80		35.94
2 mo. 8.	530	550	39	59	58.19	\pm		32.12		12.6		4291
$2 \mathrm{mo}$. 10,	580	550	39	59	58.27	\pm		30.21	$+$	9.88		38.36
	567	569	40	6	22.28	-		46.38		3.3		39.20
2 mo .11.	530	550	39	59	58.31	$+$		37.88	$+$	8.85		45.04
2 mo .14.	567	569	40	6	22.00	-		48.84		2.55		36.21
2 mo .17.	530	550	39	59	58.60	$+$		28.98	\pm	8.85		36.43
11 mo .5.	2049	2070	40	0	59.76			6.32	-	22.05		44.08
11 mo .9.	2049	2070	40	0	59.645	\pm		1.119	-	20.217		10.55
12 mo .8.	2166	2185	40	1	15.573	-		41.347	7	2.0475		36.27
$12 \mathrm{mo} 11.$.	62	77	40	5	57.82	-	5	30.944	$+$	11.025		37.40
12 mo .16.	48	51	39	56	44.92		4	24.307	\square			37.78
$12 \mathrm{mo} 18.$.	48	51	39	56	44.923	+	3	36.582		17.797		89.30
12 mo. 18.	62	77	40	5	57.46	-	5	36.966	$+$	18.27		38.77
12 mo .19.	$4 \times$	51	39	56	44.92		3	37.5838	+	18.1115		39.97
$12 \mathrm{mo} 28.$.	48	51	89	56	44.79		4	5.7883		13.86		36.72
$12 \mathrm{mos.}_{1883 .} 28 .$	62	77	40	5	56.818		5	2,18		17.64		87.04
1 mo .2.	261	279	39	54	46.794		6	5.913	-	15.281		37.44
1 mo. 11.	261	279	39	54	51.519		6	10.366	-	21.735		40.15
1 mo .12.	530	550	39	59	53.852			54.495	-	7.087		41.26
1 mo. 22.	530	550	39	59	56.380			50.243	-	5.985		40.64
2 mo. 2.	530	550	39	59	52.351		1	6.02	-	20.947		38.37
2 mo . 5.	466	475	40	10	41.481	-1	0	19.478	+	15.12		37.07

Date.	Catalogue No. of Stars.		$1 / 2\left(\delta+\delta^{\prime}\right)$.			Micrometer Correction.		Level Correction.		Latitude.
88.										
$\mathrm{mo}_{\text {i }} 5$.	$\begin{aligned} & 489 \\ & 530 \end{aligned}$	$\begin{aligned} & 495 \\ & 5505 \end{aligned}$	$\begin{aligned} & 39 \\ & 39 \end{aligned}$	$\begin{aligned} & 58 \\ & 59 \end{aligned}$	56.523		$\begin{aligned} & 12.567 \\ & 21.5061 \end{aligned}$		$\begin{aligned} & 31.815 \\ & 22.68 \end{aligned}$	39.91 43.19
"	567	569	40	6	19.803		5.959		23.153	36.99
$2 \mathrm{mo} 8.$.	466	475	40	10	44.976	- 10	11.925		3.78	36.83
	467	475	40	12	12.959	- 11	37.301		3.78	9.44
"	489	495	39	58	55.198	+ 1	41.225		3.15	39.67
"	530	550	39	59	56.306		4375		0.787	40.84
"	577	5091	30	51	${ }_{85} \mathbf{5} .175$		9.149		,	39.70
$9{ }^{\prime \prime}$	578	591	40	5	10.217	- 4	27.16		3.44	89.62
2 mo .9.	468	475	40	10	44.976	- 9	9.373		7.56	43.16
"	489	495	89	58	55.198	+ 1	40.150		3.44	38.79
		569			20.1325	5	45.9918		7.215	41.38
"	682	710	39	56	19.1615	$+$	13.783		6.3	39.20
2 mo .12.	466	475	40	10	44.011		46.635		7.56	41.97
	489	495	89	58	55.782	+	33.011		6.615	35.43
"	530	570	39	59	56.5165	$+$	411792			40.84
.	517	569	40	6	20.3575		43.3199		2.3625	39.41
"	${ }_{697} 678$	${ }_{7} 5910$	40 39	54	${ }_{34.5205}^{4.5105}$	- 6	29.769 10.165		2.677	37.73 45.65
2 mo. 13.	466	475	40	10	44,041	$\underline{-10}$	13.517		6.15	37.11
	517	569	40	6	20.3575	-5	34.0215		9.135	37.20
	697	710	39	54	31.5105		22.1385		14.49	
$2 \mathrm{mo}{ }^{\text {a }} 23$.	680	550	89	59	57.113		44.928	+	.787	4283
	753	757	39	56	7.521		37.36s		4.882	40.01
mo. 27.	580	551	39	59	57.031		44,20		3.1	44.33
${ }_{3} \mathrm{mos}$ mo.	812	822	39	54	18.6199	+6	28.125		2.017	44.69
mois 13.	779	812	40	0	26.399		3.357		11.496	41.27
	779	834	39	53	53,759	+6	85. 276		11.025	40.06
3 mo .14.	779 812	859 822	39 39	54	19.105		24.096		7.718	8.81

The mean of these 76 results gives the latitude of the Observatory $40^{\circ} \quad 0^{\prime} \quad 40.085$.
Assuming them all to be of equal weight, the probable error of a single observation is $1.706^{\prime \prime}$ and of the final result $.191^{\prime \prime}$.

Note.-The value of the longitude of the Observatory, standing on our books, but obtained, we do not know how, is 6 m .59 .3 sec . East of Washingtion. At the time of the Transit of Venus, Washington time was telegraphed to our railroad station, distant one-half mile from the Observatory and compared with our local time. The mean of three days' comparisons gave a difference of 6 m .59 .6 sec .

On a Orinoid with Movable Spines. By Henry S. Williams.
(Read before the American Philosophical Society, April 20, 1883.)
Among the rarer forms of the second fauna of the upper Devonian, at the base of the Chemung group, Ithaca, N. Y., is a Crinoid with some interesting features.
In its general characters it agrees with the family Platycrinidw of Rœmer, and falls under the section Hexacrinites as defined by Wachsmuth and Springer in Revision of the Palæocrinoidea, Pt. II, p. 56.

PROC. AMER. PHILOS, SOC. XXI. 114. K. PRINTED JUNE 22, 1883.

[^0]: *This compend of Joannes Junior is of great importance in the study of the Western branch of the Seven Wise Masters, and has been reprinted by K, Gosdeke in the Orient und Occident, i1i, pp. 388-423, Liber de septem Sapientibus.

